Database Data Mining: Practical R Enterprise and Oracle Advanced Analytics

Husnu Sensoy
husnu.sensoy@globalmaksimum.com

Global Maksimum Data & Information Technologies

October 2, 2012
Content

1. Introduction

2. Oracle Enterprise R in Practice
 - Data Visualization
 - A Bit of Probability and Information Theory
 - Optimization
 - Text Analysis & Decision Trees

3. Wrap up
Who am I?

✓ Founder at Global Maksimum Data & Information Technologies
✓ Oracle ACE in BI Domain
✓ Oracle Magazine DBA of the Year in 2009
✓

Husnu Sensoy husnu.sensoy@globalmaksimum.com
A bunch of people who know what they are doing mainly focused on data and the transformation of data into information.
Global Maksimum Data & Information Technologies

✓ A bunch of people who know what they are doing mainly focused on data and the transformation of data into information.
✓ Complex Event Processing
Global Maksimum Data & Information Technologies

✓ A bunch of people who know what they are doing mainly focused on data and the transformation of data into information.
✓ Complex Event Processing
 ✓ 1.2 Million Event in a second on 2x2 Socket Nehalem Blades
✓ Data Mining
Global Maksimum Data & Information Technologies

✓ A bunch of people who know what they are doing mainly focused on data and the transformation of data into information.
✓ Complex Event Processing
 ✓ 1.2 Million Event in a second on 2x2 Socket Nehalem Blades
✓ Data Mining
 ✓ Churn Prediction Models for Telcos
 ✓ Marketing Target Selection Models
✓ Large Scale Database Management System Projects

Husnu Sensoy husnu.sensoy@globalmaksimum.com Global Maksimum Data & Information Technologies

Database Data Mining: Practical R Enterprise and Oracle Advanced Analytics
Global Maksimum Data & Information Technologies

✓ A bunch of people who know what they are doing mainly focused on data and the transformation of data into information.
✓ Complex Event Processing
 ✓ 1.2 Million Event in a second on 2x2 Socket Nehalem Blades
✓ Data Mining
 ✓ Churn Prediction Models for Telcos
 ✓ Marketing Target Selection Models
✓ Large Scale Database Management System Projects
 ✓ 120+ TB Exadata migration from UNIX systems.
 ✓ Exadata Master Class all over the EMEA region for Exadata customers, Oracle partners, and Oracle staff at the region.
Advanced Analytics

✓ For the first version of BI we just filter rows, project columns, aggregate them using some functions, and give only what customer asks for.
Advanced Analytics

✓ For the first version of BI we just filter rows, project columns, aggregate them using some functions, and give only what customer asks for.

✓ After we have focused on *machine generated data*, or Big Data dealing the data as we did before becomes more and more fruitless.
Advanced Analytics

✓ For the first version of BI we just filter rows, project columns, aggregate them using some functions, and give only what customer asks for.

✓ After we have focused on machine generated data, or Big Data dealing the data as we did before becomes more and more fruitless.

✓ That’s mainly because of the fact that there is only tiny amount of information available in this pile of data.
Advanced Analytics

✓ For the first version of BI we just filter rows, project columns, aggregate them using some functions, and give only what customer asks for.

✓ After we have focused on *machine generated data*, or Big Data dealing the data as we did before becomes more and more fruitless.

✓ That’s mainly because of the fact that there is only tiny amount of information available in this pile of data.

✓ So it requires better tricks, automation, and post-analysis capabilities.
In-database Advanced Analytics

✓ 80% of data mining activity for enterprise means *feature engineering*.
80% of data mining activity for enterprise means feature engineering.

Feature Engineering requires an iterative process of

- Filtering data (WHERE)
- Aggregating data (GROUP BY)
- Transforming data (CASE, DECODE, COALESCE, etc.)
In-database Advanced Analytics

✓ 80% of data mining activity for enterprise means feature engineering.
✓ Feature Engineering requires an iterative process of
 ✓ Filtering data (WHERE)
 ✓ Aggregating data (GROUP BY)
 ✓ Transforming data (CASE, DECODE, COALESCE, etc.)
In-database Advanced Analytics

✓ 80% of data mining activity for enterprise means *feature engineering*.

✓ *Feature Engineering* requires an iterative process of
 ✓ Filtering data (WHERE)
 ✓ Aggregating data (GROUP BY)
 ✓ Transforming data (CASE, DECODE, COALESCE, etc.)

✓ It is almost impossible to maintain an integrated mining environment (Scripts, files, metafiles, etc.) out of database
Oracle Advanced Analytics Toolkit

✓ SQL-2003 & Extensions
✓ Oracle Data Mining
✓ Oracle Spatial Extensions
✓ Flow based mining with SQL Developer
✓ Oracle Enterprise R
✓ R is a free software environment for statistical computing and graphics.
✓ Majority of newbies (young data scientists) recently graduate or to be graduated from top universities use R.
✓ Batteries are included.
✓ Runs on all modern platforms.
Oracle R Enterprise

✓ Data you can process with standard R is limited with the amount of memory available on the server running R.
Oracle R Enterprise

✓ Data you can process with standard R is limited with the amount of memory available on the server running R.
✓ In order to bypass this problem people implement their own solutions in order to off-store data or utilize data sampling techniques.
Oracle R Enterprise

✓ Data you can process with standard R is limited with the amount of memory available on the server running R.
✓ In order to bypass this problem people implement their own solutions in order to off-store data or utilize data sampling techniques.
✓ ORE is an extension to standard R adding Oracle steroids into it.
Oracle R Enterprise

✓ Data you can process with standard R is limited with the amount of memory available on the server running R.

✓ In order to bypass this problem people implement their own solutions in order to off-store data or utilize data sampling techniques.

✓ ORE is an extension to standard R adding Oracle steroids into it.

✓ The basic idea is to off-load R commands seemless to Oracle Database or Oracle Big Data Appliance.
This session is not a R tutorial session but rather a fly over some possible solutions to real life scenarios using R. If you need some R tutorial please refer to:

✓ Oracle R Enterprise Training 2 - Introduction to R
✓ R Studio
Data Visualization

✓ Advance data analysis usually starts and ends with data visualization.
 ✓ Before modeling anything data scientists use graphs & charts to figure out behaviour of data
 ✓ After modeling in order to report the results they again refer to charts.

✓ R supports tens of different charting & graphing packages. Just to mention two of them
 lattice is used to generate conditioned graphs (a.k.a. trellis graphs)
 ggplot2 is used to make graph generation more consistent in R.
Histogram

✓ Do you see any significant pattern in distribution?
✓ Do you like the way histogram is represented?

```r
source("~/r-snippets/oow2012/mydata.r", local=TRUE)
dataset = generateCustomer()

h = hist(dataset$BillPerPeriod, freq=TRUE,
          ylab="Number of Customers",
          xlab="Bill Amount",
          main="Bill Amount Distribution")
```

![Histogram of Bill Amount Distribution](image)
Data Visualization

Remove the Outliers

Do you see any significant pattern in distribution?

```r
source("~/r-snippets/oow2012/mydata.r", local=TRUE)

dataset = generateCustomer()

nooutlier = function(data, column, q=0.99, inc=TRUE) {
  q = quantile(data[,column], na.rm=TRUE, probs = quantile, names=FALSE)
  if (inclusive) {
    pruned = subset(data, data[,column] <= q)
  } else {
    pruned = subset(data, data[,column] < q)
  }
  pruned
}

pruned = nooutlier(dataset, "Bill per Period", 0.99)

h = hist(pruned$Bill per Period, freq=TRUE,
         ylab="Number of Customers",
         xlab="Bill Amount",
         main="Bill Amount Distribution")
```

Husnu Sensoy husnu.sensoy@globalmaksimum.com
Global Maksimum Data & Information Technologies

Database Data Mining: Practical R Enterprise and Oracle Advanced Analytics
Data Visualization

Conditional Histograms

```r
source("~/r-snippets/ow2012/mydata.r", local=TRUE)
source("~/r-snippets/ow2012/commons.r", local=TRUE)
dataset = generateCustomer()
pruned = nooutlier(dataset, "BillperPeriod", 0.99)
library(lattice)
histogram(~BillperPeriod | UsingServiceX, data=pruned)
```
Too Many Columns to Visualize

```r
source("~/r-snippets/oow2012/mydata.r", local=TRUE)
source("~/r-snippets/oow2012/commons.r", local=TRUE)

dataset = generateCustomer()
head(dataset)

pruned = nooutlier(dataset, "BilliperPeriod", 0.99)

library(lattice)
histogram(~BilliperPeriod | CarBrand, data=pruned)
```
A Bit of Probability and Information Theory

Comparing Histograms

✓ We need a way to calculate similarity between those histograms.
✓ A strong tool from information theory Kullback—Leibler Divergence allows us to define a distance metric between two distributions.

```r
equidwidth = function(data, col, n=10, sf=1e-6){
  qlist = quantile(data[, col], na.rm=TRUE,
                  probs = seq(0.1,1.0, by=1./n),
                  names=FALSE)

  result=c()
  for (quantile in qlist){
    result = c(result ,
                (nrow(subset(data, data[, col] <= quantile))/nrow(data)))
  }

  result[1:n]=c(0, result[1:(n-1)]) + rep(sf, n)
}
```
KL Divergence & Symmetry

- \(D_{KL}(P \parallel Q) = \sum_i P(i) \ln \frac{P(i)}{Q(i)} \)
- Notice that \(D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P) \)
- So we simply take the average of two to obtain a symmetric metric.

```r
kl_distance = function(dist1, dist2) {
    kl1 = 0.0
    for (i in 1:length(dist1)) {
        kl1 = kl1 + dist1[i] * log(dist1[i]/dist2[i], 2)
    }
    kl2 = 0.0
    for (i in 1:length(dist1)) {
        kl2 = kl2 + dist2[i] * log(dist2[i]/dist1[i], 2)
    }
    (kl1+kl2)/2
}
```
A Bit of Probability and Information Theory

Top 5 Car Brands whose Owners Diverge from Baseline

<table>
<thead>
<tr>
<th>Brand</th>
<th>KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancia</td>
<td>8.969125</td>
</tr>
<tr>
<td>Lincoln</td>
<td>8.969125</td>
</tr>
<tr>
<td>Proton</td>
<td>7.572549</td>
</tr>
<tr>
<td>Daewoo</td>
<td>7.572549</td>
</tr>
<tr>
<td>Pontiac</td>
<td>6.421267</td>
</tr>
</tbody>
</table>

```
ddf = NULL
baseline = equiwidth(pruned, "BillperPeriod")
for (brand in dataset[!duplicated(dataset[,c('CarBrand')]),1]){
    brandDist = equiwidth(subset(pruned, pruned[, 'CarBrand'] == brand), "BillperPeriod")
    ddf = rbind(ddf, data.frame(carbrand=brand, kl=kl_distance(baseline, brandDist)))
}

head(ddf[order(ddf$kl, decreasing=TRUE),])
```
Problem Definition

✓ We have a terrain covered by several stations and each point on the terrain has one of the following status:

 GREEN Region is in the LoS of at least one station.

 YELLOW Region is in the LoS of at least one station but far away.

 RED Region is out of LoS.

✓ For a fixed number of stations we need to cover as much as we can.
Model Sketch Up

1. Define a function to calculate the ratio of green zones on terrain.

```r
# Compute merged status of all observers
mergedstatus <- rep("red", length(terrain$height))
for (i in seq(1:dim(m)[1])){
  terrain$dist2observer = distance(terrain, c(m[i,], 7))
  status = LoS(terrain, c(m[i,], 7), maxDist)
  mergedstatus = updatestatus(mergedstatus, status)
}
sum(mergedstatus=="green")
```

2. Give this function to one of optimization modules of R (Nelder — Mead Technique) which can handle non-smooth target functions.

```r
optim <- optim(observers, targetfunc, control=list(fnscale=-1, trace=5, REPORT=1))
```

3. Get the optimal station distribution.

1Refer to LoS Analysis (Part 4)
1 Station (54%)
3 Stations (83%)
6 Stations (99%)
Problem Definition

✓ For a given string which is written intentionally or erroneously wrong by subscribers, how can we build a model which can deduce the most probable string among 3 possibilities (or chose to not making any decision).
Problem Definition

✓ For a given string which is written intentionally or erroneously wrong by subscribers, how can we build a model which can deduce the most probable string among 3 possibilities (or chose to not making any decision).

Our legitimate strings are *mom, dad, and brother*. And we have

- *brothe* → brother
- *bro* → brother
- *brother1* → brother
- *p* → ?
- *1234* → ?
- *mom.i.came.home* → mom
- *mmomyy* → mom
- *dad[atwork]* → dad
- *dod* → dad
Model Sketch Up

1. Do some feature engineering
Model Sketch Up

1. Do some feature engineering
 - ✔ Length of the string

Husnu Sensoy husnu.sensoy@globalmaksimum.com
Global Maksimum Data & Information Technologies

Database Data Mining: Practical R Enterprise and Oracle Advanced Analytics
Model Sketch Up

1. Do some feature engineering
 - ✓ Length of the string
 - ✓ Prefix flag (3 attributes for each)
Model Sketch Up

1. Do some feature engineering
 - ✓ Length of the string
 - ✓ Prefix flag (3 attributes for each)
 - ✓ Contains flag (3 attributes for each)
Model Sketch Up

1. Do some feature engineering
 - ✓ Length of the string
 - ✓ Prefix flag (3 attributes for each)
 - ✓ Contains flag (3 attributes for each)
 - ✓ Anything else?

2. Build a classifier to classify those texts based on those features.

3. Evaluate your classifier
Text Analysis & Decision Trees

First Model

```r
source("~/r-snippets/oow2012/mydata.r", local=TRUE)
df = generateText()

library(rpart)

# grow tree
fit <- rpart(corrected ~ length+prefixBrother+prefixDad+prefixMom+instrBrother+
             instrDad+instrMom,
             method="class", data=df)
table(pred = predict(fit, df, type="class"),
      true = df$corrected)
```

<table>
<thead>
<tr>
<th>true</th>
<th>pred</th>
<th>brother</th>
<th>dad</th>
<th>mom</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>brother</td>
<td>0</td>
<td>30</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>dad</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>mom</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>
Text Analysis & Decision Trees

More Feature Engineering using Jaro-Winkler Algorithm

Jaro-Winkler distance is a distance metric between strings which can be used as a fuzzy string matching algorithm resilient to typo errors.

```
library(RecordLinkage)

enhanced = data.frame(df,
  momScore = jaro.winkler("mom", df$original),
  dadScore = jaro.winkler("dad", df$original),
  brotherScore = jaro.winkler("brother", df$original))
```

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>pred</th>
<th>brother</th>
<th>dad</th>
<th>mom</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>brother</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dad</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mom</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
R contains lots of libraries to help you model a physical phenomenon in anyway you like and visualize it.
R contains lots of libraries to help you model a physical phenomenon in anyway you like and visualize it.

Oracle Enterprise R makes it possible to handle large volumes of data without changing your R environment basics.
Conclusion

✓ R contains lots of libraries to help you model a physical phenomenon in anyway you like and visualize it.
✓ Oracle Enterprise R makes it possible to handle large volumes of data without changing your R environment basics.
✓ Don’t take ODM and Oracle Enterprise R as alternatives of each other but rather complimentary solutions of the same problem.
Question & Answer
Stay in Touch

husnu.sensoy@gmail.com

husnu.sensoy@globalmaksimum.com

http://husnusensoy.wordpress.com

@husnusensoy